An Accurate Operator Splitting Scheme for Nonlinear
نویسندگان
چکیده
EEcient numerical schemes for nonlinear diiusion l-tering based on additive operator splitting (AOS) were introduced in 15]. AOS schemes are eecient and unconditionally stable, yet their accuracy is low. Future applications of nonlinear diiusion ltering may require additional accuracy at the expense of a relatively modest cost in computations and complexity. To investigate the eeect of higher accuracy schemes, we rst examine the Crank-Nicolson and DuFort-Frankel second-order schemes in one dimension. We then extend the AOS schemes to take advantage of the higher accuracy that is achieved in one dimension, by using symmetric multiplicative splittings. Quantitative comparisons are performed for small and large time steps, as well as visual examination of images to nd out whether the improvement in accuracy is noticeable .
منابع مشابه
An Accurate Operator Splitting Scheme for NonlinearDi usion
EEcient numerical schemes for nonlinear diiusion ltering based on additive operator splitting (AOS) were introduced in 15]. AOS schemes are eecient and unconditionally stable, yet their accuracy is limited. Future applications of nonlinear diiusion ltering may require better accuracy at the expense of a relatively modest cost in computations and complexity. In this report we explore second orde...
متن کاملAn Accurate Operator Splitting Scheme for Nonlinear Diffusion Filtering
nonlinear diffusion filtering, operatorsplitting schemes, bilateral filtering Efficient numerical schemes for nonlinear diffusion filtering based on additive operator splitting (AOS) were introduced in [15]. AOS schemes are efficient and unconditionally stable, yet their accuracy is limited. Future applications of nonlinear diffusion filtering may require better accuracy at the expense of a rel...
متن کاملOperator Splitting for Three-Phase Flow in Heterogeneous Porous Media
We describe an operator splitting technique based on physics rather than on dimension for the numerical solution of a nonlinear system of partial differential equations which models three-phase flow through heterogeneous porous media. The model for three-phase flow considered in this work takes into account capillary forces, general relations for the relative permeability functions and variable...
متن کاملThe numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting
Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...
متن کاملFast explicit operator splitting method for convection-diffusion equations
Systems of convection–diffusion equations model a variety of physical phenomena which often occur in real life. Computing the solutions of these systems, especially in the convection dominated case, is an important and challenging problem that requires development of fast, reliable and accurate numerical methods. In this paper, we propose a second-order fast explicit operator splitting (FEOS) m...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria A modular, operator splitting scheme for fluid-structure interaction problems with thick structures
We present an operator-splitting scheme for fluid-structure interaction (FSI) problems in hemodynamics, where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The equations of linear elasticity are used to model the structure, while the Navier-Stokes equations for an incompressible viscous fluid are used to model the fluid. The operator splitting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001